The relationship between task-induced stress, vocal changes, and physiological state during a dyadic team task

Abstract

It is commonly known that a relationship exists between the human voice and various emotional states. Past studies have demonstrated changes in a number of vocal features, such as fundamental frequency f0 and peakSlope, as a result of varying emotional state. These voice characteristics have been shown to relate to emotional load, vocal tension, and, in particular, stress. Although much research exists in the domain of voice analysis, few studies have assessed the relationship between stress and changes in the voice during a dyadic team interaction. The aim of the present study was to investigate the multimodal interplay between speech and physiology during a high-workload, high-stress team task. Specifically, we studied task-induced effects on participants' vocal signals, specifically, the f0 and peakSlope features, as well as participants' physiology, through cardiovascular measures. Further, we assessed the relationship between physiological states related to stress and changes in the speaker’s voice. We recruited participants with the specific goal of working together to diffuse a simulated bomb. Half of our sample participated in an “Ice Breaker” scenario, during which they were allowed to converse and familiarize themselves with their teammate prior to the task, while the other half of the sample served as our “Control”. Fundamental frequency (f0), peakSlope, physiological state, and subjective stress were measured during the task. Results indicated that f0 and peakSlope significantly increased from the beginning to the end of each task trial, and were highest in the last trial, which indicates an increase in emotional load and vocal tension. Finally, cardiovascular measures of stress indicated that the vocal and emotional load of speakers towards the end of the task mirrored a physiological state of psychological “threat”.

Publication
Proceedings of the 19th ACM International Conference on Multimodal Interaction, ICMI 2017

Related